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Abstract. We show that SU(n) Bethe ansatz equations with arbitrary ‘twist’ parameters are
hidden inside certain nth-order ordinary differential equations, and discuss various consequences
of this fact.

1. Introduction

Recent work has revealed unexpected connections between the functional relations and Bethe
ansatz (BA) equations arising in integrable quantum field theory, and the behaviour of certain
ordinary differential equations (ODEs) [1–7]. In this paper we extend these links to cover a
whole class of BA systems associated with the SU(n) Lie algebras. The papers just cited, and
earlier work such as [8–11], should be consulted for the background to these developments,
but we begin with a brief review of the main points.

The first example to be found concerned SU(2)BA systems at a specific value of the twist
parameter, and associated them with certain Schrödinger equations [1]. The generalization to
arbitrary twist, turned out to require the addition of an angular-momentum term to the ODE [2].
In studies of the BA, a functional equation found by Baxter, the T –Q relation, is known to
encode the BA equations in a particularly neat way; the place of this relation in the differential
equation side of the story is found in [4]. After this, the question of generalizations to SU(n)
with n > 2 was addressed in [5, 6]. In [5], a reasonably complete mapping of the SU(3) case
onto third-order ODEs was found, and it was suggested that higher-order equations would be
the appropriate setting to search for the more general case. Independent work by Suzuki [6]
provided some more concrete support for this idea. However, this latter paper did not treat the
completely general case (both the deformation parameter and the twists were restricted) and
the role of a particularly important generalization of the T –Q relation, sometimes called the
‘dressed vacuum form’, was not elucidated. For this reason, we return to the topic here, and
show how the approach of [5] can be extended to general n. One of the main new features
is a way of incorporating angular-momentum type terms into the higher-order ODEs, which
encodes the BA twists in a particularly neat way. This simplifies the discussion considerably,
and even streamlines aspects of the SU(3) case treated in [5]. We also derive nonlinear integral
equations (NLIEs) for the associated spectral problems, and discuss duality properties.

0305-4470/00/478427+15$30.00 © 2000 IOP Publishing Ltd 8427
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2. The ordinary differential equation

The initial ODE that one might consider has the form(
(−1)n+1 dn

dxn
+ P(x,E)

)
ψ(x) = 0 P(x,E) = xnM − E (2.1)

with M a positive real number, related to the deformation parameter. For n = 3 this is the
first of the equations studied in [5], while the general-n case, but with nM restricted to integer
values, was the subject of [6]. For each n, (2.1) has only one free parameter, namely M , and
so it is clear that this equation cannot hope to incorporate SU(n) BA systems at general values
of the twists. The results of [2,5] would tend to suggest that these twists should be associated
with the addition of terms homogeneous with dn

dxn , of the form Akx
−k dn−k

dxn−k , k = 2, . . . , n.
(It will be convenient to assume that the term with k = 1 has been eliminated by a suitable
redefinition of ψ .) This gives n − 1 further free parameters, exactly matching the number of
twists in an SU(n) BA system. However, the variables {Ak} turn out to be rather inconvenient,
and it is better to take a slightly more indirect route.

First, define a general homogeneous differential operator of degree one by setting

D(g) =
(

d

dx
− g

x

)
. (2.2)

Useful properties of this operator are

D(g)† = −D(−g) (2.3)

D(g2 − 1)D(g1) = D(g1 − 1)D(g2). (2.4)

The first of these relates the operator to its adjoint, while the second expresses a form of
commutativity. Now, given a vector g = (g0, g1, . . . , gn−1), set

D(g) = D(gn−1 − (n− 1))D(gn−2 − (n− 2)), . . . , D(g1 − 1)D(g0). (2.5)

This is a homogeneous differential operator of order n; by the ‘commutativity’ property it
depends on the components {g0, . . . , gn−1} of g in a symmetrical manner. From now on we
also impose

n−1∑
i=0

gi = n(n− 1)

2
(2.6)

to ensure the vanishing of the term in D(g) proportional to x−1 dn−1

dxn−1 . Finally, we record one
more property of D(g) which will be useful later: its indicial polynomial (see e.g. [12]) is

f (λ) =
n−1∏
i=0

(λ− gi). (2.7)

With these ingredients in place, the nth-order ODE that we propose to study is obtained simply
by replacing the operator dn

dxn in (2.1) by D(g):

((−1)n+1D(g) + P(x,E))ψ(x) = 0 P(x,E) = xnM − E. (2.8)

3. The fundamental system of solutions

As in [4–7] we take our cue from the approach of [8] to second-order ODEs. We claim that (2.8)
has a solution y(x,E, g) such that

• y(x,E, g) is an entire function of (x, E, g), modulo a possible branch point at the origin
of the complex x plane.
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• as |x| → ∞ in the sector | arg x| < (n + 1)π/n(M + 1),

dpy

dxp
∼ (−1)p

x(1−n+2p)M/2

i(n−1)/2√
n

exp(−xM+1/(M + 1)) (3.1)

for p = 0, 1, . . . . This holds if M > 1/(n − 1); more generally the WKB-like formula
y ∼ P(x,E)−(n−1)/2n exp(− ∫ x P (t, E)1/n dt) can be used in the way explained, for
n = 2, in the appendix of [4]. The normalization of y has been chosen for later
convenience.

• y is uniquely characterized by the asymptotic (3.1) for p = 0 and x real.

For n = 2, nM ∈ Z and D(g) = d2

dx2 , these properties were proved in [8]. We have not
attempted a proof for the more general case (however, see [6] for a related discussion).

To construct further solutions, we set†

yk(x, E, g) = ω(n−1)k/2 y(ω−kx, ω−nMkE, g) ω = e2π i/n(M+1). (3.2)

For k ∈ Z, it is easily checked that yk solves (2.8). If sectors Sk are defined as

Sk :

∣∣∣∣arg x − 2kπ

n(M + 1)

∣∣∣∣ < π

n(M + 1)
(3.3)

then as x → ∞ in Sk− n
2
∪ Sk− n

2 +1 ∪ · · · ∪ Sk+ n
2
, (3.1) implies that

dpyk
dxp

∼ (−1)pω−k(1−n+2p)(M+1)/2 x
(1−n+2p)M/2

i(n−1)/2√
n

exp(−ω−k(M+1)xM+1/(M + 1)). (3.4)

We call subdominant a solution which tends to zero fastest in a given sector; up to a constant
multiple, yk is the unique solution to (2.8) which is subdominant in Sk .

Wronskians between these solutions will be important in the following, so we define

W
(m)
k1,k2,...,km

= W(m)[yk1 , yk2 , . . . , ykm ] (3.5)

where

W(m)[f1, f2, . . . , fm] = Det


f1 f2 · · · fm
f ′

1 f ′
2 · · · f ′

m

...
...

...

f
[m−1]
1 f

[m−1]
2 · · · f [m−1]

m

 (3.6)

and f [p]
i (x) = dp

dxp fi(x). We will give a special status to those Wronskians whose arguments
are successive integers, and in preparation for this we set

W
(m)
k = W

(m)
k,k+1,k+2,...,k+m−1. (3.7)

Note that W(1)
k = yk , and that (generalizing (3.2))

W
(m)
k1+k,k2+k,...,km+k(x, E, g) = ωm(n−m)k/2W(m)

k1,k2,...,km
(ω−kx, ω−nMkE, g). (3.8)

For an nth-order ODE with vanishing (n− 1)th-order term, as is true of our case by (2.6),
it is standard that all n-fold Wronskians W(n)[f1, . . . , fn] are independent of x, and vanish if
and only if the solutions f1, . . . , fn are linearly dependent. In particular, (3.4) can be used as
|x| → ∞ in Sk−1/2 ∪ Sk+1/2 to show that W(n)

k = 1, and so, for each k ∈ Z, the functions
{yk, yk+1, . . . , yk+n−1} are linearly independent, and furnish a basis of solutions to (2.8).

† Note that since ωn(M+1) = 1, the shift in E in the definition of yk could equally have been written as ωnk , so
long as k remains an integer. This would have been more in line with [1, 4, 11], and emphasizes the fact that in the
‘semiclassical’ limit M → ∞, the shifts tend to one. Here we retain the conventions of [5], since this makes the
transition to BA equations in standard form a little simpler, and also appears to be the most natural choice when
half-integer values of k come to be discussed, in section 7 below.
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4. Stokes multipliers and functional relations

We next establish a basic functional relation. Expanding y0 in the basis provided by
{y1, y2, . . . , yn}, it must be possible to write

n∑
k=0

(−1)kC(k)(E, g) yk(x, E) = 0 (4.1)

where C(0)(E, g) = 1 and the Stokes multipliers C(k)(E, g), k > 0 are analytic functions of
E and g. (The formal similarity between this equation and equation (5.50) of [13] should be
noted.) Given that W(n)

1 = 1, we have the simple relation

C(k)(E, g) = W
(n)

01,...,k̂,...,n
(E, g) (4.2)

with the hat (k̂) indicating that the corresponding index is to be omitted. Clearly,C(n) = W
(n)
0 =

1. To treat the other Stokes multipliers, we first relate them to the ‘privileged’ Wronskians
W

(m)
k . We will only need C(1) here, but the discussion can be generalized to the other cases.

For general p, consider the determinants

0 = Det


y

[i]
0 y

[i]
1 · · · y[i]

p

y0 y1 · · · yp
y ′

0 y ′
1 · · · y ′

p

...
...

...

y
[p−1]
0 y

[p−1]
1 · · · y

[p−1]
p

 (4.3)

with i = 0, 1, . . . , p − 2. Expanding the first row of each using Cramer’s rule, we have

0 =
p∑
k=0

(−1)k


yk
y ′
k

...

y
[p−2]
k

W(p)

01,...,k̂,...,p
. (4.4)

Now form a (p−1)× (p−1)matrix with the RHS of (4.4) as the first column, and the vectors
vj = [yj , y ′

j , . . . , y
[p−2]
j ]t , j = 2, 3, . . . , p−1 as the remainder. Taking its determinant yields

the following Plücker-type relation:

0 = W
(p−1)
02,...,p−1W

(p)

12,...,p −W
(p−1)
12,...,p−1W

(p)

02,...,p + (−1)pW(p−1)
p2,...,p−1W

(p)

01,...,p−1. (4.5)

Rearranging, and supplementing the notation (3.7) with the convention W(0)
k = 1 ∀k,

W
(p)

02,...,p

W
(p)

1

= W
(p−1)
02,...,p−1

W
(p−1)
1

+
W

(p−1)
2

W
(p−1)
1

W
(p)

0

W
(p)

1

=
p−1∑
m=0

W
(m)
2

W
(m)
1

W
(m+1)
0

W
(m+1)
1

(4.6)

the second equality being obtained by repeated substitution. This is the result we need. Since
C(1) = W

(n)
02,...,n, we can set p = n and multiply (4.6) through by

∏n
j=0 W

(j)

1 to find

C(1)
n∏
j=0

W
(j)

1 =
n−1∑
m=0

( m−1∏
j=0

W
(j)

1

)
W

(m)
2 W

(m+1)
0

( n∏
j=m+2

W
(j)

1

)
. (4.7)

5. Bethe ansatz equations

As it stands, equation (4.7) involves x as well asE and g, and so is not quite ready to be mapped
onto a standard set of BA equations. The simplest idea, simply to set x to zero, only works
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at exceptional values of the gi , since in general the differential operator D(g) has a (regular)
singularity at x = 0. Instead, motivated by the treatments of [2,4,5], we expand y(x,E, g) as

y(x,E, g) = W
(1)
0 (x, E, g) =

n−1∑
i=0

D
(1)
[i] (E, g) χi(x, E, g) (5.1)

where the χi form an alternative basis of solutions to (2.1), fixed by the demand that they have
the simplest possible behaviours near the origin:

χi ∼ xgi + O(xgi+n) x → 0. (5.2)

(Recall that the gi are the roots of the indicial polynomial (2.7).) Strictly speaking the
asymptotic (5.2) does not always suffice to pin down all of the χi . Assume, until further
notice, that the gi are ordered as

Re (g0) < Re (g1) < · · · < Re (gn−1). (5.3)

Then χ0 is certainly uniquely determined by (5.2), and the χi>0 can be defined by a process of
analytic continuation from this solution, just as is done for the radially symmetric Schrödinger
equation when passing between the so-called regular and irregular solutions. This will be used
in section 8 below.

The direct substitution of (5.1) into (3.5) yields an expansion for W(m)
0 (x, E, g) in which

the functions χi(ω−kx, ω−nMkE, g) appear as well as the χi(x, E, g). However, all of these
functions are solutions to the initial ODE, and by considering their behaviour near x = 0 one
finds

χi(ω
−kx, ω−nMkE, g) = ω−kgi χi(x, E, g). (5.4)

Therefore the m-fold Wronskians W(m)
0 have expansions of the form

W
(m)
0 (x, E, g) =

∑
0�j1<j2<···<jm�n−1

D
(m)
[j1j2,...,jm](E, g)W

(m)[χj1 , χj2 , . . . , χjm ](x, E, g). (5.5)

Using (3.5), (5.1) and (5.4), the coefficients D(m)
[j1j2,...,jm](E, g) can be expressed as sums of

products of the D(1)
[i] (ω

−nMkE, g). This leads to relations which generalize the ‘quantum
Wronskians’ of [11]. However, for current purposes it is better to treat the coefficients with
different values of m as independent functions, and so we will leave further discussion of this
point to another occasion.

We will initially focus on the dominant terms of the expansions (5.5). With the
ordering (5.3), these are

W
(m)
0 (x, E, g) ∼ D

(m)
[01,...,m−1](E, g) x

βm+m(n−m)/2 x → 0 (5.6)

where in order to simplify subsequent calculations we set

βm =
m−1∑
j=0

gj −m(n− 1)/2. (5.7)

Substituting (5.5) into (4.7), an x-independent equation is found by extracting the coefficient
of the leading power xα , α = ∑n

j=0(βj + j (n− j)/2). Shifting E to ωnME and setting

D(m)(E, g) = D
(m)
[01,...,m−1](E, g) D

(m)
k (E, g) = D(m)(ω−nMkE, g)

T (1)(E, g) = C(1)(ωnME, g)
(5.8)

the final result can be written as

T (1)
n∏
j=0

D
(j)

0 =
n−1∑
m=0

( m−1∏
j=0

D
(j)

0

)
ω−βmD(m)

1 ωβm+1D
(m+1)
−1

( n∏
j=m+2

D
(j)

0

)
. (5.9)
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This is a generalized T –Q relation, with the D(j) playing the role of the eigenvalues of the Q
(or A in [11]) operators. In the language of integrable lattice models relations of this type are
known as the dressed vacuum form for the transfer matrix eigenvalues (see e.g. [14, 15]).

We can now derive an initial set of BA equations. Suppose that the zeros of D(m)(E) are
at E = F

(m)
k , k = 1, 2, . . . ,∞. (For the next few equations we will leave the dependence

of all functions on g implicit.) Setting E = F
(m)
k in (5.9), the LHS vanishes, as do all but

two terms in the sum on the RHS. Assuming, as will generically be the case, that there are no
further vanishings, this gives us the following set of coupled equations for the {F (m)k }:
D(m−1)(ω−nMF (m)k )

D(m−1)(F
(m)
k )

D(m)(ωnMF
(m)
k )

D(m)(ω−nMF (m)k )

D(m+1)(F
(m)
k )

D(m+1)(ωnMF
(m)
k )

= −ω−2βm+βm−1+βm+1 . (5.10)

These form a system of Bethe ansatz equations (BAEs) of SU(n) type (see, e.g., equation (3.32)
of [13]). However, the reality properties are not very transparent when the equations are given
in this form, and it is useful to make one more definition, setting

D(m)(E, g) = A(m)(ω−nM(m−1)/2E, g) F
(m)
k = ωnM(m−1)/2E

(m)
k . (5.11)

Then the BAEs (5.10) become

A(m−1)(ω−nM/2E(m)k )

A(m−1)(ωnM/2E
(m)
k )

A(m)(ωnME
(m)
k )

A(m)(ω−nME(m)k )

A(m+1)(ω−nM/2E(m)k )

A(m+1)(ωnM/2E
(m)
k )

= −ω−2βm+βm−1+βm+1 . (5.12)

These can also be written using the Cartan matrix Cmt of the SU(n) Dynkin diagram:
n−1∏
t=1

ωCmtβt
A(t)(ω

nM
2 CmtE

(m)
k )

A(t)(ω− nM
2 CmtE

(m)
k )

= −1 k = 1, 2, . . . . (5.13)

Finally, the BAEs can be given a factorized form once the growth properties of the functions
involved have been established. A WKB treatment along the lines of [4] shows that the function
A(1)(E, g) = D

(1)
[0] (E, g) has the large-|E| asymptotic

lnA(1)(E, g) ∼ κ(nM, n)(−E)µ |E| → ∞ | arg(−E)| < π (5.14)

where

µ = (M + 1)

nM
κ(a, b) = *(1 + 1

a
)*(1 + 1

b
) sin( π

b
)

*(1 + 1
a

+ 1
b
) sin( π

b
+ π
a
)
. (5.15)

The asymptotics for the remaining lnA(m)(E, g) are more tricky. So long as it is assumed
that the other functions D(1)

[i] share the asymptotic (5.14), then the quantum Wronskian-like
relations mentioned just after (5.5) can be used to show that all of theA(m)(E, g) are of the same
order, namely µ. For this section this suffices, but for the NLIE a more precise result will be
required. Unfortunately, cancellations of leading terms seem to be at work inside the quantum
Wronskians in almost all directions in the complexE plane, making a direct calculation rather
difficult. However, indirect evidence suggests the following:

lnA(m)(E, g) ∼ sin(πm/n)

sin(π/n)
κ(nM, n)(−E)µ | arg(−E)| < π. (5.16)

Note that this claim matches the Z2 symmetry property of the spectral determinants discussed
in section 7 below, and its implications are in agreement with the numerical checks for the
‘soluble’ M = 1/n cases reported in section 8.

For M > 1/(n − 1) the order µ of the functions A(m)(E, g) is less than one, so the
Hadamard factorization theorem implies

A(m)(E, g) = A(m)(0, g)
∞∏
j=1

(
1 − E

E
(m)
j

)
. (5.17)
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This finally allows (5.13) to be written as

n−1∏
t=1

ωCmtβt
∞∏
j=1

(
E
(t)
j − ω

nM
2 CmtE

(m)
k

E
(t)
j − ω− nM

2 CmtE
(m)
k

)
= −1 k = 1, 2, . . . . (5.18)

6. The nonlinear integral equation

Next we derive a set of coupled nonlinear integral equations. Define

a(m)(E, g) =
n−1∏
t=1

ω−Cmtβt A
(t)(ω− nM

2 CmtE, g)

A(t)(ω
nM

2 CmtE, g)
(6.1)

so that a(m)(E(m)k , g) = −1 by (5.13). We will follow the ideas of [11, 16] (another approach
can be found in [17]). The product representation (5.17) allows ln a(m) to be written as an
infinite sum over the zeros E(m)k of A(m). We now make two important assumptions: that all
of the E(m)k lie on the positive real axis of the complex E plane, and that these are the only
points in some narrow strip about this axis at which a(m)(E, g) is equal to −1. We expect that
these will hold for some range of the parameters g. Cauchy’s theorem can then be used to
replace the sum by an integral along a contour C which runs from +∞ to 0 above the real axis,
encircles the origin and returns to ∞ below the real axis:

ln a(m)(E, g) = −2π i

n(M + 1)

n−1∑
t=1

Cmt βt +
n−1∑
t=1

∫
C

dE′

2π i
Fmt(E/E

′)∂E′ ln(1 + a(t)(E′, g)) (6.2)

where

Fmt(E) = ln
1 − ω− nM

2 CmtE

1 − ω
nM

2 CmtE
. (6.3)

After a variable changeE = exp(θ/µ), we define (with a mild abuse of notation) ln a(m)(θ) ≡
ln a(m)(eθ/µ, g), integrate by parts and use the property [a(m)(θ)]∗ = a(m)(θ∗)−1 to find

ln a(m)(θ)−
n−1∑
t=1

∫ ∞

−∞
dθ ′ Rmt(θ − θ ′) ln a(t)(θ ′) = −2π i

n(M + 1)

n−1∑
t=1

Cmt βt

−2i
n−1∑
t=1

∫ ∞

−∞
dθ ′ Rmt(θ − θ ′)Im ln(1 + a(t)(θ ′ − i0)). (6.4)

Here Rmt(θ) = i
2π ∂θFmt (e

θ/µ). We now take the Fourier transform of this equation, setting

f̃ (k) = F[f ](k) =
∫ ∞

−∞
f (θ) e−iθk dθ (6.5)

f (θ) = F−1[f̃ ] (θ) = 1

2π

∫ ∞

−∞
f̃ (k)eiθk dk. (6.6)

The transformed equations can be written in a compact form as

n−1∑
t=1

(δmt − R̃mt (k))F[ln a(t)](k)

= − 4iπ2δ(k)

n(M + 1)

n−1∑
t=1

Cmt βt − 2i
n−1∑
t=1

R̃mt (k)Im F[ln(1 + a(t))](k) (6.7)
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where the nonvanishing entries of R̃mt (k) are

R̃〈mt〉(k) = sinh( π
n
ξk)

sinh( π
n
(1 + ξ)k)

R̃mm(k) = sinh( π
n
(1 − ξ)k)

sinh( π
n
(1 + ξ)k)

(
ξ = 1

M

)
(6.8)

the notation 〈mt〉 implying that the nodes m and t are connected on the Dynkin diagram
of SU(n). Applying the inverse matrix (1I − R̃(k))−1, transforming back and rewriting the
imaginary parts in terms of values above and below the real axis, we obtain a set of coupled
NLIEs for the functions a(m)(θ),m = 1, . . . , n−1, considered along contours C1 and C2 which
run from −∞ to +∞, just below and just above the real θ -axis:

ln a(m)(θ) = iπαm(g)− ib0Mmeθ +
n−1∑
t=1

(∫
C1

dθ ′ ϕmt (θ − θ ′) ln(1 + a(t)(θ ′))

−
∫

C2

dθ ′ ϕmt (θ − θ ′) ln

(
1 +

1

a(t)(θ ′)

))
. (6.9)

The driving terms ib0Mneθ arise from zero modes, which can be traced to the poles of
(1I − R̃(k))−1 at k = i, and their magnitudes

b0 = 2 sin(πµ)κ(nM, n) Mm = sin(πm/n)

sin(π/n)
(6.10)

are fixed by imposing the asymptotic (5.16). The kernel and twist factors are, respectively,

ϕmt (θ) = F−1[(1I − (1I − R̃(k))−1)mt ](θ) (6.11)

αr(g) = − 2π

n(M + 1)

n−1∑
t,m=1

(1I − R̃(0))−1
rmCmt βt . (6.12)

These can be written more explicitly with the help of the deformed Cartan matrix

Cmt(k) =


2 m = t

−1

cosh( πk
n
)

〈mt〉 (6.13)

and its inverse

C−1
tm (k) = C−1

mt (k) = coth( π
n
k) sinh( π

n
(n−m)k) sinh( π

n
tk)

sinh(πk)
(m � t). (6.14)

By (6.8), the nonvanishing off-diagonal and diagonal elements of R̃(k) are related by
2R̃〈mt〉(k) = (1 − R̃mm(k))/ cosh( πk

n
), and so

δmt − R̃mt (k) = 1
2Cmt(k)(1 − R̃mm(k)) (6.15)

where

1 − R̃mm(k) = 2 sinh( π
n
ξk) cosh( π

n
k)

sinh( π
n
(1 + ξ)k)

. (6.16)

Plugging relations (6.15) and (6.16) into (6.12) and (6.11) we obtain

ϕmt (θ) =
∫ ∞

−∞

dk

2π
eikθ

(
δmt −

sinh( π
n
(1 + ξ)k)

sinh( π
n
ξk) cosh( π

n
k)
C−1
mt (k)

)
αm(g) = −2

n
βm

(6.17)

with ξ = 1/M . The final NLIEs exactly match the massless versions of the equations found
in [18, 19] in a completely different context.
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7. Symmetry properties

The SU(n) Dynkin diagram has an evident Z2 symmetry, swapping nodesm and n−m. This
symmetry is also respected by the BAEs so long as the twists are transformed at the same time.
We would expect to see signs of this symmetry in the differential equation, but quite how is
not immediately obvious. For example, the first node of the Dynkin diagram is associated
with the basic solution y(x,E, g) while its partner, the (n − 1)th node, is associated with an
(n − 1)-fold Wronskian W(n−1)

0 (x, E, g). The answer to this puzzle is provided by the fact
that taking the Wronskian of n − 1 solutions to an nth-order ODE automatically provides a
solution to the adjoint equation. For n = 3 this observation can be found in [20], and was
related to the current context in [5]. For general n, the result can be established as follows. It
is easiest not to use the factorized form (2.5) of D(g) for the differential operator, but rather
to suppose that (2.8) has been rewritten as

dn

dxn
ψ + B2(x)

dn−2

dxn−2
ψ + B3(x)

dn−3

dxn−3
ψ + · · · + (−1)n+1P(x,E)ψ = 0. (7.1)

(For the differential operators discussed in section 2, Bk(x) = (−1)n+1Akx
−k , but neither

this nor the explicit relation between the Aks and the gis will be needed for the argument.)
Now consider n − 1 solutions to this equation, gathered together into a vector as f =
(f1, f2, . . . , fn−1). We denote by V [a1, a2, . . . , an−1] the determinant of the matrix whose
rows are the derivatives f [a1], f [a2], . . . , f [an−1], so that the Wronskian of f1, f2, . . . , fn−1 is

W(n−1)[f1, f2, . . . , fn−1](x, E, g) = V [0, 1, . . . , n− 2]. (7.2)

Differentiating once, and using the general property that the differential of a determinant is
equal to a sum of determinants in which each row has been differentiated,

d

dx
V [a1, a2, . . . , an−1] =

n−1∑
k=1

V [a1, . . . , ak−1, ak + 1, ak+1, . . . , an−1] (7.3)

we have
d

dx
W(n−1) = V [0, 1, . . . , n− 4, n− 3, n− 1] (7.4)

all other terms vanishing by antisymmetry. Differentiating again,

d2

dx2
W(n−1) = V [0, 1, . . . , n− 4, n− 2, n− 1] + V [0, 1, . . . , n− 4, n− 3, n]. (7.5)

The last term can be rewritten using (7.1) to substitute for f [n]:

V [0, 1, . . . , n− 4, n− 3, n] = −B2(x)V [0, 1, . . . , n− 4, n− 3, n− 2] = −B2(x)W
(n−1).

(7.6)

(Again, all other terms vanish by antisymmetry.) Thus(
d2

dx2
+ B2(x)

)
W(n−1) = V [0, 1, . . . , n− 4, n− 2, n− 1]. (7.7)

The pattern should now be clear. Differentiating both sides of (7.7) will again result in two
terms on the RHS. The second of these can be rewritten using (7.1), but this time yields
B3(x)W

(n−1) instead of −B2(x)W
(n−1) as the one nonvanishing contribution. Taking this over

onto the LHS and continuing to differentiate, one finally finds that W(n−1) satisfies(
dn

dxn
+

dn−2

dxn−2
B2(x)− dn−3

dxn−3
B3(x) + · · · − P(x,E)

)
W(n−1) = 0 (7.8)
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which is indeed (up to an overall sign) the equation adjoint to (7.1). Now we can return to the
factorized form of D(g), take its adjoint using (2.3), and rewrite (7.8) as

((−1)n+1D(g†) + (−1)nP (x,E))W(n−1)(x, E, g) = 0 P(x,E) = xnM − E (7.9)

with

g† = (g
†
0, g

†
1, . . . , g

†
n−1) g

†
j = n− 1 − gn−1−j . (7.10)

For n even this is the original ODE (2.8), modulo the swap to the ‘conjugate’ set of parameters
g†. For n odd, the term P(x,E) has been replaced by −P(x,E). However, the conventions
adopted in the definition (3.2) mean that the ‘half-shifted’ functions yk+1/2(x, E, g) (k ∈ Z)
themselves solve (2.8) with P replaced by −P . Taking an (n − 1)-fold Wronskian of these
functions and repeating the above discussion, the minus signs cancel. In particular, this means
that whether n is even or odd we have

((−1)n+1D(g†) + P(x,E))W(n−1)
1−n/2(x, E, g) = 0. (7.11)

This is exactly the equation solved by the yk(x, E, g†). Comparing asymptotics as |x| → ∞
in S0, we finally establish the formula

W
(n−1)
1−n/2(x, E, g) = y(x,E, g†). (7.12)

This shows that the (n − 1)-fold Wronskian is (up to a shift in its arguments) just a basic
solution to another ODE, and thus demonstrates that the relation between the first and last
nodes is indeed reflected in the properties of the differential equation. The spectral functions
corresponding to the remaining nodes on the Dynkin diagram can now be obtained either as
m-fold Wronskians of the W(n−1)

k+1/2 , or as (n−m)-fold Wronskians of the yk , and the diagram
symmetry should be reflected in the equality of the results of the two calculations. Keeping
the normalization of the yks as in (3.4), the necessary identity is the following:

W
(n−m)
m−1 = W(m)[W(n−1)

0 ,W
(n−1)
1 , . . . ,W

(n−1)
m−1 ]. (7.13)

While we do not have a general proof, form = 2 this result follows from the Jacobi identity (cf,
e.g., equation (2.20) of [13]) and the fact thatW(n) = 1. This case is also equivalent to a formula
due to Frobenius [21], more recently reviewed in [22].

8. Analytic continuation and the linear potential

Thus far, we have restricted attention to the dominant terms in the expansions (5.5). However,
quite which term is dominant depends on the ordering (5.3) of the gi . While the ODE (2.8) is
insensitive to this ordering (as remarked earlier, it depends on the gi in a symmetrical manner),
the same is not true of the NLIE (6.9), since it sees not the parameters g but rather the BA
twists α(g). By analytic continuation, it should be possible to move between different twists
corresponding to the same ODE, thereby accessing the other terms in the expansions. In this
section we will test this idea by means of a simple example. This also serves as a rather strong
check on the various conjectures that have been made above.

In the expansion of y given by (5.1), the coefficients D(1)
[i] are explicitly

D
(1)
[i] (E, g) = (−1)i

W(n)[W(1)
0 (x, E, g), χ0, . . . , χi−1, χi+1, . . . , χn−1]

W(n)[χ0, . . . , χn−1]
(8.1)

where

W(n)[χ0, . . . , χn−1] =
n−1∏

j=0,i=j+1

(gj − gi). (8.2)
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Thus, for example, continuation of the parameters from g = (g0, . . . , gi, . . . , gj , . . . , gn−1)

to g′ = (g0, . . . , gj , . . . , gi, . . . , gn−1) has the following effect:

D
(1)
[i] (E, g

′) = D
(1)
[j ] (E, g) D

(1)
[j ] (E, g

′) = D
(1)
[i] (E, g) (8.3)

with the other D(1)
[k] (E, g) remaining unchanged. So long as the property (2.6) is preserved at

all points of the continuation, the NLIE will hold throughout. At the end of the continuation,
the ODE will have returned to its original form, but the NLIE will have undergone a nontrivial
monodromy, since the twists will have changed. Explicitly, an NLIE describing D(1)

[i] (E, g)

can be found by continuing the twist parameter α to α′ via the transformation g0 → gi , with
the remaining gk being allowed to permute amongst themselves. In fact, a number of different
NLIEs can be obtained, depending on the permutation chosen.

A set of special choices for the vector g provides a simple illustration of all this. We
use the notation ĝ to indicate a vector with distinct components gj taking values in the set
{0, 1, . . . , (n − 1)}. There are n! different ĝ, but for each choice the resulting differential
operator D(ĝ) is equal to dn

dxn . We will use ĝi to indicate that g0 has been fixed to be equal to
i. In this particularly simple case, the functions (8.1) become

D
(1)
[i] (E, ĝi ) = 1

i!

di

dxi
y(0, E, ĝ). (8.4)

(Since the function y(x,E, ĝ) does not depend on the ordering of the components of ĝ, we
omit the subscript i on the RHS of this equation.) The direct treatment of previous sections
only allowed us to discuss D(1)

[0] = y(0, E, ĝ), but, according to the continuation idea just
described, the NLIEs should also encode information about the higher derivatives y[i].

To make a numerical check, we set M = 1/n, so that P(x,E) = x − E and the ODE
is solvable by a complex Fourier transform, as in [5] for n = 3. This lies outside the range
M > 1/(n−1), but, just as in previous examples [1,5], we assume that the final NLIE continues
to hold. If we write y(x,E, ĝi ) = A(x − E), then the ODE becomes

(−1)n+1 dnA(x)
dxn

+ xA(x) = 0 (8.5)

and has the normalized solution

A(x) = 1

i(n−1)/2
√

2π

∫
*

dp exp

(
−ipx +

(ip)n+1

n + 1

)
. (8.6)

The contour * follows a path in the lower half complex plane that starts at |x| = ∞ along
the ray arg(x) = −π

2 − π
n+1 and ends along arg(x) = −π

2 + π
n+1 (for n = 3 this is illustrated

in figure 2 of [5]). Evaluating (8.6) numerically for n = 3, 4 and 5, we achieved good
agreement with results obtained via the numerical treatment of (6.9), not only for the zeros of
the functions y(0, E, ĝ) but also, after analytic continuation from g0 to g1, g2 and so on, of
y ′(0, E, ĝ), . . . , y[n−1](0, E, ĝ). The accuracy obtained was typically to 12 digits, and could
doubtless be improved with longer computing runs. Occasionally, the NLIE (6.9) breaks down,
and in particular attempts to solve it by numerical iteration fail to converge. Generally this
happens whenever there is a breakdown in one or other of the two assumptions necessary for
the derivation of the NLIE in its simplest form, mentioned at the beginning of section 6 above.
For the continuations between the different ĝi it seems to be the second assumption which
sometimes fails, with points appearing on the positive real axis of the complex E plane, not
in the set {E(m)k }, at which the functions a(m) take the value −1. (For n = 2 these points are
zeros of T (E), and the necessary modification of the NLIE was discussed in [23].) In most
cases we found that by altering the choice of ĝi the problem could in any case be avoided. One
exceptional case is n = 3. The two choices for ĝ1 are (1, 0, 2) and (1, 2, 0), and for neither of
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these did the iteration of the basic NLIE converge. Despite this fact, an extrapolation allowed
a comparison with the results of the complex Fourier transform to be made, and we found that
the zeros of y ′(0, E, ĝ) were indeed reproduced. Note that in this case the zeros of y(0, E, ĝ)
and y ′′(0, E, ĝ) can be found from an NLIE which respects the SU(3) diagram symmetry [5],
but that to find the zeros of y ′(0, E, ĝ) we are forced to use an integral equation which breaks
this symmetry.

9. Duality

As in [2, 4, 5], a duality transformation can be defined which relates solutions of the ODEs
with M > 0 to solutions of ODEs of the same form but with −1 < M < 0. For n = 2, the
case of the Schrödinger equation, this relates a confining potential to a singular potential. The
first step is to implement a (generalized) Langer [24] transformation

z = ln x y(x) = e(n−1)z/2u(z). (9.1)

The use of the operators D(g) and D(g) makes this task very simple, since the relation(
d

dx
− g

x

)
e
p−1

2 z(x)f (z(x)) = e
p−3

2 z

(
d

dz
+
p − 1

2
− g

)
f (z) (9.2)

allows exponentials of z to be passed successively through the factors ofD(g), resulting in the
transformed equation[
(−1)n+1

(
d

dz
− γn−1

)
· · ·
(

d

dz
− γ1

)(
d

dz
− γ0

)
+ en(1+M)z − Eenz

]
u(z) = 0 (9.3)

where γi = gi − (n − 1)/2. The exponentials can now be exchanged via z → z
M+1 + ln M+1

E1/n

to obtain[
(−1)n+1

(
d

dz
− γn−1

M + 1

)
· · ·
(

d

dz
− γ1

M + 1

)(
d

dz
− γ0

M + 1

)
− Ẽenz − e

nz
M+1

]
u(z) = 0

(9.4)

where Ẽ = −(M + 1)nME−(M+1). Applying the inverse transformation, (2.8) becomes

((−1)n+1D(g̃) + P(x, Ẽ))y(x) = 0 P(x, Ẽ) = −xnM̃ − Ẽ (9.5)

with

M̃ = − M

M + 1
g̃ = {g̃0, g̃1, . . . , g̃n−1} g̃i = gi +M(n− 1)/2

M + 1
. (9.6)

(Observe that the property (2.6) is preserved by the transformation of g.) This, the dual
equation, is the same as the original ODE (2.8) apart from the reversed sign in front of the
‘potential’ term xnM̃ , and the fact that the parameters (M, g) have been replaced by (M̃, g̃).
Thus the equation transforms very simply under duality.

10. Conclusions

In this paper we have found a hidden SU(n) structure inside certain nth-order differential
equations. This has enabled a large set of Bethe ansatz systems, and their associated nonlinear
integral equations, to be related directly to spectral problems.

One aspect that we did not discuss relates to the truncations of the functional relations
which can occur at special values of the parameters M and g. These can provide a link to
equations arising in the thermodynamic Bethe ansatz, a subject of much independent interest.
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The earlier analysis of [6], which should be considered as complementary to our work, was
much closer to this approach, and it would be interesting to develop it further.

The correspondence between Bethe ansatz systems and ordinary differential equations has
various potential applications. From the point of view of integrable systems, results such as
duality properties are made much more apparent by the mapping into a differential equation,
a fact which has already been exploited, for n = 2, in [2]. In fact, at least for n = 2, the T
andQ-functions are coming to have an increasingly important role to play in the general study
of integrable quantum field theories with boundaries [25–30], and this makes it likely that the
new perspective on these functions provided by their reinterpretation as spectral determinants
will prove of broader relevance. (This subject is even starting to find applications in string
theory [31].) To give one example, in the study of boundary flows direct relations between the
T and the g-functions of Affleck and Ludwig [32] have been found in certain cases [25,26,30].

On the other hand, it is also rather remarkable that one can obtain information about spectral
determinants for quantum mechanical problems, and more general ODEs, using conformal
field theory techniques such as the truncated conformal space approach [28] and perturbation
theory [2,26,30]. Our treatment also entailed some rather strong conjectures about the reality
and positivity properties of spectral problems associated with the ODEs under consideration.
These conjectures were well supported by numerical work, but proofs are still lacking. Previous
examples of spectral problems which, despite having no obvious hermiticity, still exhibit real
spectra include the PT symmetric quantum mechanics of [33]. (This was briefly discussed
from the point of view of functional relations and T –Q systems in [4].) It appears that a much
larger set of problems sharing similar properties is being uncovered, and it would be very
rewarding to understand this behaviour at a deeper level.
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211–338

Voros A 1999 Exact resolution method for general 1D polynomial Schrödinger equation J. Phys. A: Math. Gen.
32 5993–6007

(Voros A 1999 Preprint math-ph/9903045)
[11] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1997 Integrable structure of conformal field theory II.

Q-operator and DDV equation Commun. Math. Phys. 190 247–78
(Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1996 Preprint hep-th/9604044)

[12] Coddington E A and Levinson N 1955 Theory of Ordinary Differential Equations (New York: McGraw-Hill)
[13] Krichiver I, Lipan O, Wiegmann P and Zabrodin A 1997 Quantum integrable models and discrete classical

Hirota equations Commun. Math. Phys. 199 267–304
(Krichiver I, Lipan O, Wiegmann P and Zabrodin A 1996 Preprint hep-th/9604080)

[14] Reshetikhin N Yu 1987 The spectrum of the transfer matrices connected with Kac–Moody algebras Lett. Math.
Phys. 14 235–46

[15] Kuniba A and Suzuki J 1995 Analytic Bethe ansatz for fundamental representations of Yangians Commun. Math.
Phys. 173 225–64

(Kuniba A and Suzuki J 1994 Preprint hep-th/9406180)
[16] Destri C and de Vega H J 1992 New thermodynamic Bethe ansatz equations without strings Phys. Rev. Lett. 69

2313–7
Destri C and de Vega H J 1995 Unified approach to thermodynamic Bethe ansatz and finite size corrections for

lattice models and field theories Nucl. Phys. B 438 413–54
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